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Abstract

We investigate computationally two recent mathematical findings
involving unusual behavior of solutions of the Young-Laplace capillary
equation in cylindrical tubes of particular sections. The first concerns
a configuration for which smoothing of the boundary curve at a sharp
corner leads from existence to non-existence of a solution over the
container section in zero gravity. The second describes a discontinuous
behavior of relative rise height in nesting tubes placed vertically in
an infinite reservoir. The numerical results support and quantify the
mathematical predictions.

1 Introduction

The free surface of a liquid partly filling a container can behave in curious

unexpected ways. We investigate computationally recent mathematical re-

sults for two examples of such behavior under reduced gravity. The first

example describes behavior of a liquid in a cylindrical container whose sec-

tion has a corner: In the absence of gravity, smoothing of the corner can

transform a situation for which a solution of the governing Young-Laplace

equations exists and is bounded to one for which no solution exists, contrary
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to what one would customarily expect. The second example concerns rise

height of a liquid in capillary tubes dipped into an infinite reservoir in a ver-

tically downward gravity field: Again contrary to what one might expect,

smaller tubes do not always lift wetting liquids higher than do larger ones;

moreover even in simple configurations the height relationship can reverse

with arbitrarily large jump for small changes in tube section.

Our study is based on the classical Laplace-Young equations for an equi-

librium capillary free-surface. For liquid in a vertical cylindrical container

of section Ω with a gravity field, if present, that is downward-acting (B ≥ 0)

there holds [1, Sec.1.9] (see Figure 1)

div Tu = Bu + 2H in Ω, Tu =
∇u

√
1 + |∇u|2

, (1)

ν · Tu = cos γ on Σ. (2)

The equations have been written in dimensionless form with u being the

ratio of height of the liquid-vapor interface to a characteristic length a;

B = ρga2/σ is the Bond number, with ρ the density difference across the

interface, σ the interfacial surface tension, and g the acceleration due to

gravity; Σ is the boundary of Ω, and ν is the outward unit normal on Σ; γ

denotes the contact angle between the liquid and the wall of the tube. We

consider here the case of a wetting liquid 0 ≤ γ < π
2 . (The non-wetting case

can be treated analogously.)

For the first problem, for which B = 0, the constant 2H is determined

by the contact angle boundary condition and the container geometry, as
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Figure 1: Partly filled cylindrical tube with section Ω.

obtained by integrating (1) by parts over Ω

2H =
|Σ| cos γ

|Ω| , (3)

where |Ω| and |Σ| denote respectively the area and length of Ω and Σ. H

is the (constant) mean curvature of the solution surface. For the second

problem, for which gravity is present and surface heights are measured from

the height at infinity of the reservoir into which the tubes are dipped, the

value of H is zero.

2 First Problem

2.1 The Problem

It is generally known that for sufficiently small contact angle in the absence

of gravity (B = 0), solutions of (1),(2),(3) do not exist in containers with
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corners. If α is the smallest interior half-angle at a corner, then the contact

angle of a wetting liquid must satisfy the “corner condition”α+ γ ≥ π/2 for

a solution to exist [2]. The range of values of γ for which solutions do exist

when γ ≥ π/2− α depends on the geometry of the entire container section.

In familiar cases, rounding of corners increases the range of contact angles

for which solutions exist (see, e.g., [3]).

The example of a cylinder with rectangular section is studied in [3].

For the rectangular cylinder one has α = π/4, and it can be shown that,

no matter what the aspect ratio of the rectangle, solutions exist if and

only if γ ≥ γcr, where γcr = π/2 − α = π/4. Rounding all corners with

rounding radius ε > 0 decreases the critical contact angle γcr. The computed

graphs in [3] indicate that, as ε increases, the critical contact angle decreases

monotonically until the value zero is reached; the specific rounding radius

for which the critical contact angle is zero (i.e., a solution exists for all values

of γ) depends on the aspect ratio of the rectangle. The results correspond

to what one usually expects intuitively: that rounding of corners moderates

their effect in inducing singular behavior and increases the range of contact

angles over which solutions are possible.

In a recent study [4] it was shown mathematically that the contrary

situation can occur. For a certain container, rounding a corner actually

results in an increase in critical contact angle. The section of the cylindrical

container studied there as an example is shown in Figure 2. The indicated

domain is obtained by starting with a quadrilateral circumscribing the unit
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Figure 2: Domain with corner at P rounded by a circular arc of radius δ.

circle and replacing the top and bottom corners by arcs of the inscribed

circle. For the example, the remaining corners at P and Q have interior

angles 60◦ and 90◦, respectively. The corner at P is then rounded with a

circular arc of radius δ, as indicated.

For the underlying, unrounded quadrilateral it can be shown that the

corner condition for the smallest interior half-angle, α = 30◦ at P , deter-

mines the critical angle. Thus for the quadrilateral γcr = 60◦; solutions of

(1),(2),(3) are not possible if γ < 60◦, but exist for γ ≥ 60◦. Replacing the

top and bottom corners by arcs of the inscribed circle does not affect this

critical angle.

For the container depicted in Figure 2 the critical value of γ is less than

its value of 60◦ for the corner at P unrounded (δ = 0). This result can

be obtained following a general procedure given in [1, Sec. 6.7], [3]. The

procedure requires that circular arcs Γ of radius (|Σ| cos γ)/|Ω| be placed in

Ω meeting Σ in angles γ (the prescribed contact angle), partitioning off one

or more subdomains Ω
′
with boundaries Σ

′
; see Figure 3. (If Σ has re-entrant

corners, a situation we do not consider here, separate corner conditions are
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Figure 3: Domain Ω partitioned by a circular arc Γ meeting Σ in angles γ.

required.) For all possible placements of Γ, one determines the sign of the

functional Φ(Ω; Γ; γ) defined by

Φ ≡ |Γ| − |Σ′ | cos γ + 2H|Ω′ |, (4)

where 2H is given by (3). Then the procedure yields the result that a

solution of (1),(2),(3) exists if and only if Φ is positive for all such arcs Γ. It

turns out that for many domains of practical interest there are only a few

configurations that need to be considered.

The configuration depicted in Figure 3 is proved to be the critical one

for the particular value of the rounding radius δ at P that corresponds to

γcr = 59◦. That is, for this configuration as γ decreases from values larger

than 59◦ the sign of Φ changes from positive to negative as γ passes through

the value 59◦, but it remains positive for other possible configurations of Γ.

(It can be shown similarly that if the corner at P is unrounded (δ = 0),

then for the critical value γ = γcr = 60◦ the particular arc Γ in Figure

3 is no longer interior to Ω but passes through P ; for the other possible

configurations of Γ, Φ remains positive.) See [4] for details; see also [3]
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Figure 4: Domain with corner at Q rounded by a circular arc of radius ε.

for application of the procedure to other examples, with full details for the

rounded rectangle. As a formal solution of the equations, the liquid rises

unboundedly in the cut-off subregion Ω
′
when γ ≤ γcr.

It is shown in [4] that subsequent rounding of the corner at Q (Figure 4)

can actually increase the critical angle. This rounding yields the interesting

effect of the liquid rising indefinitely at the opposite side of the container,

near P , as a result of smoothing the corner Q.

2.2 Computation of effect of rounding

To investigate computationally the predictions in [4], we compute, using

the software package matlab [5], the amount by which the critical contact

angle is increased for the domain in Figure 2 by subsequent rounding of the

corner Q, as in Figure 4. We consider values from a range of roundings δ at

P in Figure 2 giving rise to domains having critical angle between 45◦ and

60◦. (For smaller contact angles the local effects of the corner at Q would

come into play, altering the phenomenon we are studying.) The amount of

7



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
45º

50º

55º

60º

 γ
cr

δ

Figure 5: Critical γ vs. rounding radius δ for domain in Figure 2.

rounding at P needed to achieve these critical contact angles is quite small,

as depicted in Figure 5. For each value of rounding at P we allow values

from the entire range of roundings at Q, from ε = 0 (no rounding) to ε = 1

(replacing the corner at Q with the arc of the inscribed unit circle). In all

cases we calculate from (4) for what value of γ the value of Φ is zero for the

configuration of Γ depicted in Figure 3.

The results are illustrated in Figure 6, in which the difference γcr(ε) −

γcr(0) between the critical value of γ and its critical value for ε = 0 is

plotted as a function of ε for each rounding at P . As one can demonstrate

analytically, the value of the critical γ remains at 60◦ for no rounding at P

(δ = 0) no matter what the rounding 0 ≤ ε ≤ 1 is at Q. Thus the curve

for γcr = 60◦ would coincide with the ε axis in Figure 6. For increasing

rounding at P , the effect of rounding at Q is seen to become increasingly

pronounced, with largest effect about midway in the range 0 ≤ ε ≤ 1.
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Figure 6: Change in critical γ vs. rounding radius ε for domain in Figure 4.
The curves from bottom to top are for roundings at P corresponding to
γcr(0) = 59◦, 58◦, 57◦, ..., 45◦, respectively.

For each of the values of γcr(0) corresponding to the curves in Figure 6,

we calculated also the value of Φ for all other possible configurations of

Γ, which are depicted in [4]. The value of Φ was positive for these other

configurations, confirming that the configuration of Figure 3 is the one that

yields the critical value for γ when Φ is zero. For roundings at P giving rise

to critical angle γcr(0) less than 45◦, other configurations of Γ would come

into play, connected with local behavior at Q.
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Figure 7: (a) Circular capillary tubes of differing diameters dipped into a
reservoir of wetting liquid (0 ≤ γ < π/2). (b) At each point of the narrower
tube’s section liquid rises higher than it does in the wider tube over the
same section (dashed subdomain).

3 Second Problem

3.1 The Problem

For capillary tubes of circular section, a narrower tube when dipped ver-

tically into an infinite reservoir raises a wetting liquid higher than does a

wider tube (Figure 7(a)). Specifically, the surface height in the narrower

tube at each point of its section is greater than the corresponding surface

height in the wider tube at each point of a subsection congruent to the sec-

tion of the smaller tube (Figure 7(b)); this is so even if the smaller section

is not placed concentric with the larger one.

For tubes of general section, however, liquid need not rise higher in

10



a smaller section than in a larger one. This phenomenon is discussed in

[6], [1, Sec. 5.3], where a number of criteria are established for the smaller

section lifting liquid higher, and in [7],[1, Sec. 5.4], where special cases for

the opposite situation are distinguished. It was shown recently [8] that

even for sections of simple form the larger tube can lift liquid higher in

low-gravity configurations, with the height differences becoming arbitrarily

large as gravity decreases to zero. Furthermore, a discontinuous change in

behavior can occur for infinitesimal changes in section. In [9] this behavior

is investigated computationally for the particular family of nesting rounded-

square sections described in [8], for which the sections of all but the smallest

tube have discontinuities in curvature. Here we investigate computationally

the sections described in [10], for which the interior nesting sections are

concentric disks. In this way the curvature discontinuities in the earlier

example are eliminated as conceivable source of the singular behavior.

The domains are depicted in Figure 8. According to the mathematical

results in [10], the outermost domain can be any polygon, star-shaped with

respect to the center of the unit disk, whose sides lie on lines tangent to

the disk. In our study, for ease of computation, we have chosen simply Ω∗,

the regular such polygon with twelve sides, as indicated in the figure. The

smallest domain Ω1 is the unit disk, and the intermediate domains Ωt are

concentric disks of radius t, t > 1, lying interior to the polygon. Our primary

interest is in comparing limiting behavior near t = 1 among the rise heights

for the various domains. Note that if gravity is zero then the lower portion
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Figure 8: Sections for example problem. (a) unit disk Ω1, (b) disk Ωt of
radius t, t > 1, showing Ω1 as concentric superimposed dashed subdomain,
and (c) polygonal domain Ω∗ showing Ω1 and Ωt as concentric superimposed
dashed subdomains. Extended sides of Ω∗ are tangent to the unit circle
bounding Ω1.

of a hemisphere making contact angle γ with the boundary of Ω1 provides

a solution of (1),(2) both for Ω1 and for the polygonal domain. We restrict

γ so as to satisfy requirements for existence of solutions in the polygonal

domain, that is γ ≥ 60◦.

In [10] the following behavior was found.

Property (i). For each of the circular tubes Ωt, if B is small enough,

the polygonal capillary tube Ω∗ will raise liquid to a higher level over

all of Ωt than will Ωt itself. Furthermore, for each fixed t the difference

in heights will tend to infinity like 1/B as B → 0.
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Thus, in a comparison for small enough B between the polygon and any

Ωt (t > 1), one has that the larger domain (the polygon) lifts liquid higher

than does the smaller one, arbitrarily higher as B → 0.

In contrast there holds:

Property (ii). For any B > 0 the height in the unit disk Ω1 exceeds at

each point of Ω1 the height for Ω∗ and also the height for any of the

domains Ωt.

Thus, in a comparison between the unit disk Ω1 and any of the other

domains, Ωt or Ω∗, one has that the smaller domain Ω1 lifts liquid higher

than the larger one, arbitrarily higher in the case of Ωt. This is the situation

no matter how close Ωt is to being the unit disk Ω1.

One thus finds that, having chosen any B small enough so that Property

(i) holds for a given domain Ωt (t > 1) (polygon lifts liquid higher than Ωt

does), the height inequality will nevertheless reverse if, for that fixed B, the

disk Ωt approaches the unit disk Ω1. That happens no matter how small B

is initially chosen. See Figure 9, in which u1, ut, and u∗ denote respectively

the surface heights in Ω1, Ωt (t > 1), and Ω∗.

Summarizing the limiting behavior, one has:

Property (iii). Although the surface height at a given point is continu-

ous in t at t = 1 for each fixed B > 0, its limiting behavior as B → 0

changes discontinuously in t at B = 0.
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Figure 9: Diagram indicating the subregion (shaded) for which B is small
enough for Property (i) to hold. Property (ii) holds for any B > 0, for t > 1.

We wish to study quantitatively for the domains considered here the

manner in which the above behavior occurs. We note that the above results

can carry over, with appropriate re-wording, even if t is so large (t > 2/
√

3)

that domains Ωt overlap with Ω∗, or even if Ω∗ is actually interior to Ωt.

We focus attention here on the discontinuous behavior as t → 1 and B → 0;

correspondingly for our discussion and computations the circular tubes Ωt

are taken to be interior to the polygon as in Figure 8, i.e., 1 < t < 2/
√

3.

One exception, for t = 2.1, will be introduced and discussed at the end of

the following subsection.

3.2 Computational results for second problem

To compute the surface heights u(x, y) in the various domains we used the

software package pltmg [11] for obtaining numerical solutions of (1),(2)

(with H = 0, as discussed in Sec. 1). For very small values of B, in which
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we are interested, the problem is ill-conditioned, in the same manner as

described in [9] for the domains studied there. Surface heights, which grow

like 1/B, can be very large, and the near-singularity can manifest itself as

ill-conditioning of the discretized problem. We utilize here the procedures

of [9, Secs. III and IV.A] to overcome the difficulties associated with the

ill-conditioning and the growth of surface heights. See [9] for details.

The average surface height ū, as obtained from (1),(2) by integration by

parts, is ū = (|Σ| cos γ)/(B|Ω|). Thus for given B and γ the average surface

heights depend only on |Σ|/|Ω|. It is the difference in this quantity among

the various domains, magnified as B becomes small, that underlies much of

the striking behavior. For both the unit disc Ω1 and the polygonal domain

Ω∗ the value is |Σ|/|Ω| = 2. For the domains Ωt the value is 2/t.

Equilibrium free-surface configurations were calculated for domains Ω1,

Ω∗, and Ωt with t = 1.025, 1.05, ..., 1.15, for four values of Bond number

B = 100, 1, 0.01, 0.0001, and for contact angle γ = 70◦. In general, the a

posteriori error estimates on the meshes used for the domains (approximately

32,000 vertices) indicated accuracies in the solutions of about three or four

decimal places.

The numerical results for the test problems are illustrated in Figures 10

and 11. In Figure 10 the liquid surface height difference between Ω∗ and

Ωt at their center, denoted by u∗(0, 0) − ut(0, 0), is shown for each of the

values of B and t (including, for t = 1, the height difference between Ω∗ and

Ω1). The tabular values are connected with piecewise cubic splines. The
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Figure 10: Surface height differences between Ω∗ and Ωt at their centers vs.
t for several values of Bond number B.

ordinate is plotted on a logarithmic scale, to take account of the greatly

changing behavior that occurs among the values of B, and to bring out the

singular nature of the transition to the unit disk. The indicated increment

upward by 0.5 allows the negative values of u∗(0, 0)−u1(0, 0) to be displayed

conveniently on the graph.

In accordance with Properties (i)–(iii) the polygon lifts liquid higher

at its center than do the t > 1 circular domains Ωt for small enough B,

but does not lift liquid higher than the unit disk Ω1 (negative values of

u∗(0, 0) − u1(0, 0)). As B decreases, the height differences get very large.

The large slope near the end point t = 1 as B gets close to zero suggests the

discontinuous limiting behavior there.
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Figure 11: Surface height differences between Ω1 and Ω1.1 (first col-
umn), Ω1.1 and Ω∗ (second column), Ω∗ and Ω2.1 (third column). B =
100, 1, 0.01, 0.0001.
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Figure 11 depicts the surface height difference between particular pairs

of tubes, as a function of distance s from the common center to the boundary

of the superimposed smaller tube, for the indicated Bond numbers. The first

column gives the height difference u1(s) − u1.1(s) between the tubes with

section Ω1 and Ω1.1, with s measured along the radius y = 0 (see Figure 8).

These values are all positive, in accord with Property (ii) and the diagram

in Figure 9; the height difference grows as B decreases, becoming very large

for the smallest value of B. The second column gives the height difference

u1.1(s) − u∗(s) between Ω1.1 and Ω∗, as measured along the radius y = 0.

The negative value (larger tube lifts liquid higher) for small-enough B (in

this case for the values B = 0.01 and B = 0.0001), and the large values for

the smallest B, are in accord with Property (i) and the diagram in Figure 9.

The third column of Figure 11 gives the computed values of u∗(s) −

u2.1(s), the height difference between tubes with section Ω∗ and Ω2.1, as

measured along a ray x = 0. In this case the polygon is interior to the disk.

The positive sign of the entries illustrates a result that if the larger domain

is a disk the smaller domain always lifts liquid higher, no matter what its

shape [1, Sec. 5.4]. The height inequalities become very large as B → 0,

reflecting the larger difference between |Σ|/|Ω| for this pair of domains than

for the others.
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4 Concluding Remarks

The computational results have corroborated and illustrated quantitatively

some phenomena uncovered recently in mathematical studies. These phe-

nomena are among the list of striking behaviors that continue to be found

for fluid interfaces in reduced gravity.
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